this post was submitted on 17 Sep 2023
119 points (95.4% liked)
Asklemmy
43989 readers
727 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy π
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- [email protected]: a community for finding communities
~Icon~ ~by~ ~@Double_[email protected]~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I wonder sometimes about the efficiencies/outputs of some technologies lagging because other technologies are plentiful and easier, even if the potential is there for a better system.
Obviously internal combustion engines come to mind, and the reliance on fossil fuel. I guess it only took us 10 focused years to get to the moon once upon a time, so humanity will pull it off at the last minute.
With betavoltaics itβs more a matter of physics than lack of engineering refinement. Even assuming 100% efficiency, you would need something like 250 gallons (1000 liters) of tritium gas at atmospheric pressure to power a 100 Watt lightbulb.
Nuclear reactors, however, absolutely should be supplying a larger fraction of our electrical grid. Traditional, large reactor facilities have such a high cost and long timescale for permitting/construction that itβs difficult to get newer, more modern reactors built in the US. There are some exciting developments in small, modular reactors that would sidestep these issues. I believe a few designs are in the process of being built for full scale testing.
So you need to consider the relationship between the amount of decay radiation and how long a substance lasts. The more radiation, the faster the fuel will decay. If you want something to last a long time this way it will probably be too stable to generate a lot of energy.