this post was submitted on 27 May 2024
973 points (100.0% liked)

196

16227 readers
2378 users here now

Be sure to follow the rule before you head out.

Rule: You must post before you leave.

^other^ ^rules^

founded 1 year ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 31 points 3 months ago (17 children)

How is a spectrum supposed to not have a total ordering? To me saying sth is a spectrum always invokes an image of being able to map to/represent the property as an interval (unbounded or bounded) which should always give it a total ordering right?

[–] [email protected] 16 points 3 months ago* (last edited 3 months ago) (4 children)

It all comes down to definitions. First off, Totally Ordered is a property of the function that compares two elements not the set you are talking about. most sets have total orderings (if the axiom of choice is true then all sets have a total ordering). With Fields and vectorspaces there is the concept of a totally ordered Field which is essentially when the total ordering is compatible with it's field operations (e.g the set of complex numbers has many total orderings, but the field of complex numbers is not an ordered field).

So it really depends on how we define the sexuality spectrum. So long as it's simply a set then it has a total ordering. But if we allow us to add and multiply the gays then depending on how we define those functions it could be impossible to order the gay field.

Also a total ordering doesn't mean that there is exactly 1 maximal element (it would need to be a strict total ordering to have that property), so we can all be the gayest.

[–] [email protected] 1 points 3 months ago

Also the definition of 'gay' and 'gayest' is poorly defined. This assumes that gay is some sort of scalar, where in reality it's a projection from a multidimensional 'queerspace' that can change the appearance of the spectrum wildly depending on the methodology the one projecting uses.

load more comments (3 replies)
load more comments (15 replies)