this post was submitted on 01 Aug 2023
116 points (96.0% liked)

Technology

59107 readers
3218 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
 

"Accomplished by a team at the Huazhong University of Science and Technology and posted 30 minutes ago.

Why this is evidence: The LK-99 flake slightly levitates for both orientations of the magnetic field, meaning it is not simply a magnetized piece of iron or similar 'magnetic material'. A simple magnetic flake would be attracted to one polarity of the strong magnet, and repelled by the other. A diamagnet would be repelled under either orientation, since it resists and expels all fields regardless of the polarity.

Caveats There is no way to verify the orientation of the strong magnet in this video, also, there are yet to be published experimental measured values of this sample. Diamagnetism is a property of superconductors but without measured and verified data, this is just suggestive of a result.

Take-away If this synthesis was indeed successful, then this material is easy enough to be made by labs other than the original research team. I would watch carefully for results out of Argonne National Lab, who are reported to be working on their own synthesis of a sample.

This overall corroborates two independent simulation studies that investigated the original Korean authors claim about material and crystal structure, and both studies supported the claims.

Lawrence Berkeley National Lab: https://arxiv.org/pdf/2307.16892.pdf Shenyang National Lab: https://arxiv.org/pdf/2307.16040.pdf "

you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 0 points 1 year ago (1 children)

Would this potential superconductor work in devices like phones and laptops? Would it lead to more efficient operation?

[โ€“] [email protected] 2 points 1 year ago

Would this potential superconductor work in devices like phones and laptops? Would it lead to more efficient operation?

If inexpensive it could be used in power components for consumer electronics like phones and laptops, but wouldn't make a huge difference since most of the power consumption occurs in chips and displays where superconductors wouldn't apply. Though it could lead to some reduction in size and better efficiency. Battery operated devices are considered low power. High power applications are where superconductors offer the most benefit.