this post was submitted on 08 Dec 2024
23 points (96.0% liked)

Advent Of Code

985 readers
29 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 8: Resonant Collinearity

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 1 points 2 weeks ago* (last edited 2 weeks ago)

Nim

Overall really simple puzzle, but description is so confusing, that I mostly solved it based on example diagrams.
Edit: much shorter and faster one-pass solution. Runtime: 132 us

type Vec2 = tuple[x,y: int]
func delta(a, b: Vec2): Vec2 = (a.x-b.x, a.y-b.y)
func outOfBounds[T: openarray | string](pos: Vec2, grid: seq[T]): bool =
  pos.x < 0 or pos.y < 0 or pos.x > grid[0].high or pos.y > grid.high

proc solve(input: string): AOCSolution[int, int] =
  var grid = input.splitLines()
  var antennas: Table[char, seq[Vec2]]

  for y, line in grid:
    for x, c in line:
      if c != '.':
        discard antennas.hasKeyOrPut(c, newSeq[Vec2]())
        antennas[c].add (x, y)

  var antinodesP1: HashSet[Vec2]
  var antinodesP2: HashSet[Vec2]

  for _, list in antennas:
    for ind, ant1 in list:
      antinodesP2.incl ant1 # each antenna is antinode
      for ant2 in list.toOpenArray(ind+1, list.high):
        let d = delta(ant1, ant2)
        for dir in [-1, 1]:
          var i = dir
          while true:
            let antinode = (x: ant1.x+d.x*i, y: ant1.y+d.y*i)
            if antinode.outOfBounds(grid): break
            if i in [1, -2]: antinodesP1.incl antinode
            antinodesP2.incl antinode
            i += dir
  result.part1 = antinodesP1.len
  result.part2 = antinodesP2.len


Codeberg repo