this post was submitted on 08 Dec 2024
23 points (96.0% liked)

Advent Of Code

985 readers
28 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 8: Resonant Collinearity

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 1 points 2 weeks ago

Haskell

import Control.Arrow
import Control.Monad
import Data.List
import Data.Map qualified as M

type Pos = [Int]

parse :: String -> (Pos, [(Char, Pos)])
parse s = ([n, m], [(c, [i, j]) | i <- [0 .. n], j <- [0 .. m], c <- [l !! i !! j], c /= '.'])
  where
    l = lines s
    n = pred $ length $ head l
    m = pred $ length l

buildMap :: [(Char, Pos)] -> M.Map Char [Pos]
buildMap = M.fromListWith (++) . fmap (second pure)

allPairs :: [Pos] -> [(Pos, Pos)]
allPairs l = [(x, y) | (x : xs) <- tails l, y <- xs]

add = zipWith (+)
sub = zipWith (-)

antinodes :: Pos -> Pos -> [Pos]
antinodes a b = [a `sub` ab, b `add` ab]
  where
    ab = b `sub` a

inBounds [x', y'] [x, y] = x >= 0 && y >= 0 && x <= x' && y <= y'

antinodes' :: Pos -> Pos -> Pos -> [Pos]
antinodes' l a b = al ++ bl
  where
    ab = b `sub` a
    al = takeWhile (inBounds l) $ iterate (`sub` ab) a
    bl = takeWhile (inBounds l) $ iterate (`add` ab) b

part1 l = length . nub . filter (inBounds l) . concat . M.elems . fmap (allPairs >=> uncurry antinodes)
part2 l = length . nub . concat . M.elems . fmap (allPairs >=> uncurry (antinodes' l))

main = getContents >>= print . (uncurry part1 &&& uncurry part2) . second buildMap . parse