this post was submitted on 15 Dec 2024
13 points (93.3% liked)

Advent Of Code

985 readers
29 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 15: Warehouse Woes

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 2 points 1 week ago

Haskell

This was a fun one! I'm quite pleased with moveInto, which could be easily extended to support arbitrary box shapes.

Solution

import Control.Monad
import Data.Bifunctor
import Data.List
import Data.Map (Map)
import Data.Map qualified as Map
import Data.Set (Set)
import Data.Set qualified as Set

type C = (Int, Int)

readInput :: String -> (Map C Char, [C])
readInput s =
  let (room, _ : moves) = break null $ lines s
   in ( Map.fromList [((i, j), c) | (i, l) <- zip [0 ..] room, (j, c) <- zip [0 ..] l],
        map dir $ concat moves
      )
  where
    dir '^' = (-1, 0)
    dir 'v' = (1, 0)
    dir '<' = (0, -1)
    dir '>' = (0, 1)

moveInto :: Int -> Set C -> C -> C -> Set C -> Maybe (Set C)
moveInto boxWidth walls (di, dj) = go
  where
    go (i, j) boxes
      | (i, j) `Set.member` walls = Nothing
      | Just j' <- find (\j' -> (i, j') `Set.member` boxes) $ map (j -) [0 .. boxWidth - 1] =
          Set.insert (i + di, j' + dj)
            <$> foldM
              (flip go)
              (Set.delete (i, j') boxes)
              [(i + di, j' + z + dj) | z <- [0 .. boxWidth - 1]]
      | otherwise = Just boxes

runMoves :: (Map C Char, [C]) -> Int -> Int
runMoves (room, moves) scale = score $ snd $ foldl' move (start, boxes) moves
  where
    room' = Map.mapKeysMonotonic (second (* scale)) room
    Just start = fst <$> find ((== '@') . snd) (Map.assocs room')
    walls =
      let ps = Map.keysSet $ Map.filter (== '#') room'
       in Set.unions [Set.mapMonotonic (second (+ z)) ps | z <- [0 .. scale - 1]]
    boxes = Map.keysSet $ Map.filter (== 'O') room'
    move (pos@(i, j), boxes) dir@(di, dj) =
      let pos' = (i + di, j + dj)
       in maybe (pos, boxes) (pos',) $ moveInto scale walls dir pos' boxes
    score = sum . map (\(i, j) -> i * 100 + j) . Set.elems

main = do
  input <- readInput <$> readFile "input15"
  mapM_ (print . runMoves input) [1, 2]