this post was submitted on 15 Dec 2024
13 points (93.3% liked)

Advent Of Code

985 readers
29 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 15: Warehouse Woes

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 2 points 1 week ago* (last edited 1 week ago)

Haskell

Runs in 12 ms. I was very happy with my code for part 1, but will sadly have to rewrite it completely for part 2.

Code

import Control.Monad.State.Lazy
import qualified Data.Map.Strict as M

type Coord = (Int, Int)
data Block = Box | Wall
type Grid = M.Map Coord Block

parse :: String -> ((Coord, Grid), [Coord])
parse s =
    let robot = head
            [ (r, c)
            | (r, row) <- zip [0 ..] $ lines s
            , (c, '@') <- zip [0 ..] row
            ]
        grid = M.fromAscList
            [ ((r, c), val)
            | (r, row) <- zip [0 ..] $ lines s
            , (c, Just val) <- zip [0 ..] $ map f row
            ]
    in  ((robot, grid), go s)
    where
        f 'O' = Just Box
        f '#' = Just Wall
        f _ = Nothing
        go ('^' : rest) = (-1,  0) : go rest
        go ('v' : rest) = ( 1,  0) : go rest
        go ('<' : rest) = ( 0, -1) : go rest
        go ('>' : rest) = ( 0,  1) : go rest
        go (_   : rest) =            go rest
        go [] = []

add :: Coord -> Coord -> Coord
add (r0, c0) (r1, c1) = (r0 + r1, c0 + c1)

moveBoxes :: Coord -> Coord -> Grid -> Maybe Grid
moveBoxes dr r grid = case grid M.!? r of
    Nothing   -> Just grid
    Just Wall -> Nothing
    Just Box  ->
        M.insert (add r dr) Box . M.delete r <$> moveBoxes dr (add r dr) grid

move :: Coord -> State (Coord, Grid) Bool
move dr = state $ \(r, g) -> case moveBoxes dr (add r dr) g of
    Just g' -> (True, (add r dr, g'))
    Nothing -> (False, (r, g))

moves :: [Coord] -> State (Coord, Grid) ()
moves = mapM_ move

main :: IO ()
main = do
    ((robot, grid), movements) <- parse <$> getContents
    let (_, grid') = execState (moves movements) (robot, grid)
    print $ sum [100 * r + c | ((r, c), Box) <- M.toList grid']