this post was submitted on 15 Jun 2023
169 points (95.2% liked)

Programming

17398 readers
178 users here now

Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!

Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.

Hope you enjoy the instance!

Rules

Rules

  • Follow the programming.dev instance rules
  • Keep content related to programming in some way
  • If you're posting long videos try to add in some form of tldr for those who don't want to watch videos

Wormhole

Follow the wormhole through a path of communities [email protected]



founded 1 year ago
MODERATORS
 

My first experience with Lemmy was thinking that the UI was beautiful, and lemmy.ml (the first instance I looked at) was asking people not to join because they already had 1500 users and were struggling to scale.

1500 users just doesn't seem like much, it seems like the type of load you could handle with a Raspberry Pi in a dusty corner.

Are the Lemmy servers struggling to scale because of the federation process / protocols?

Maybe I underestimate how much compute goes into hosting user generated content? Users generate very little text, but uploading pictures takes more space. Users are generating millions of bytes of content and it's overloading computers that can handle billions of bytes with ease, what happened? Am I missing something here?

Or maybe the code is just inefficient?

Which brings me to the title's question: Does Lemmy benefit from using Rust? None of the problems I can imagine are related to code execution speed.

If the federation process and protocols are inefficient, then everything is being built on sand. Popular protocols are hard to change. How often does the HTTP protocol change? Never. The language used for the code doesn't matter in this case.

If the code is just inefficient, well, inefficient Rust is probably slower than efficient Python or JavaScript. Could the complexity of Rust have pushed the devs towards a simpler but less efficient solution that ends up being slower than garbage collected languages? I'm sure this has happened before, but I don't know anything about the Lemmy code.

Or, again, maybe I'm just underestimating the amount of compute required to support 1500 users sharing a little bit of text and a few images?

you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 4 points 1 year ago* (last edited 1 year ago) (1 children)

Yet with a database, if instead of a thread I wanted to display comments made every odd Tuesday that have the structure of a haiku, I could.

You could, but if you want to do it very efficiently and at scale, you would probably need to specialize your data access layer:

All that power has to be paid for somewhere!

It's paid for in the logical organization that is enforced at write-time (or during a maintenance task like rebuilding indices or recomputing statistics), where millisecond responsiveness is not as important.

do you think reddit stores its entire 18 years of content in RAM, split or duplicated between shards?

Lots of duplication across different layers to support different access patterns and reuse work between data retrieval tasks. You need to be able to efficiently access frequently requested data, ingest new data, synchronize data between the different layers, and provide a reasonable minimum efficiency for arbitrary requests.

Semi-related, here's a story about how Discord does it.

All that power has to be paid for somewhere!

[โ€“] [email protected] 2 points 1 year ago

Great link, thanks!

Looks like Discord was using 177 nodes each with 4TB disk space running Cassandra (Java), and then in 2022 migrated to 72 nodes of 9TB disk space running ScyllaDB (C++). Switching to a C++ database and writing their services in Rust allowed them to finally end latency spikes from Java garbage collection. The messages are stored in buckets assigned by channel and time window. Buckets are replicated across 3 nodes, and are accessed using "quorum consistency". They were still having difficulties with "hot partitions" where many users at once all want to access the same bucket, leading to increased latencies. They solved it by putting a data service in front of the database that would detect multiple identical incoming queries and pool them together into a single database request. The nodes are still spending a lot of time periodically "compacting" their tables for better disk read performance.