this post was submitted on 03 Aug 2023
196 points (95.0% liked)

No Stupid Questions

35893 readers
2250 users here now

No such thing. Ask away!

!nostupidquestions is a community dedicated to being helpful and answering each others' questions on various topics.

The rules for posting and commenting, besides the rules defined here for lemmy.world, are as follows:

Rules (interactive)


Rule 1- All posts must be legitimate questions. All post titles must include a question.

All posts must be legitimate questions, and all post titles must include a question. Questions that are joke or trolling questions, memes, song lyrics as title, etc. are not allowed here. See Rule 6 for all exceptions.



Rule 2- Your question subject cannot be illegal or NSFW material.

Your question subject cannot be illegal or NSFW material. You will be warned first, banned second.



Rule 3- Do not seek mental, medical and professional help here.

Do not seek mental, medical and professional help here. Breaking this rule will not get you or your post removed, but it will put you at risk, and possibly in danger.



Rule 4- No self promotion or upvote-farming of any kind.

That's it.



Rule 5- No baiting or sealioning or promoting an agenda.

Questions which, instead of being of an innocuous nature, are specifically intended (based on reports and in the opinion of our crack moderation team) to bait users into ideological wars on charged political topics will be removed and the authors warned - or banned - depending on severity.



Rule 6- Regarding META posts and joke questions.

Provided it is about the community itself, you may post non-question posts using the [META] tag on your post title.

On fridays, you are allowed to post meme and troll questions, on the condition that it's in text format only, and conforms with our other rules. These posts MUST include the [NSQ Friday] tag in their title.

If you post a serious question on friday and are looking only for legitimate answers, then please include the [Serious] tag on your post. Irrelevant replies will then be removed by moderators.



Rule 7- You can't intentionally annoy, mock, or harass other members.

If you intentionally annoy, mock, harass, or discriminate against any individual member, you will be removed.

Likewise, if you are a member, sympathiser or a resemblant of a movement that is known to largely hate, mock, discriminate against, and/or want to take lives of a group of people, and you were provably vocal about your hate, then you will be banned on sight.



Rule 8- All comments should try to stay relevant to their parent content.



Rule 9- Reposts from other platforms are not allowed.

Let everyone have their own content.



Rule 10- Majority of bots aren't allowed to participate here.



Credits

Our breathtaking icon was bestowed upon us by @Cevilia!

The greatest banner of all time: by @TheOneWithTheHair!

founded 1 year ago
MODERATORS
 

What concepts or facts do you know from math that is mind blowing, awesome, or simply fascinating?

Here are some I would like to share:

  • Gödel's incompleteness theorems: There are some problems in math so difficult that it can never be solved no matter how much time you put into it.
  • Halting problem: It is impossible to write a program that can figure out whether or not any input program loops forever or finishes running. (Undecidablity)

The Busy Beaver function

Now this is the mind blowing one. What is the largest non-infinite number you know? Graham's Number? TREE(3)? TREE(TREE(3))? This one will beat it easily.

  • The Busy Beaver function produces the fastest growing number that is theoretically possible. These numbers are so large we don't even know if you can compute the function to get the value even with an infinitely powerful PC.
  • In fact, just the mere act of being able to compute the value would mean solving the hardest problems in mathematics.
  • Σ(1) = 1
  • Σ(4) = 13
  • Σ(6) > 10^10^10^10^10^10^10^10^10^10^10^10^10^10^10 (10s are stacked on each other)
  • Σ(17) > Graham's Number
  • Σ(27) If you can compute this function the Goldbach conjecture is false.
  • Σ(744) If you can compute this function the Riemann hypothesis is false.

Sources:

top 50 comments
sorted by: hot top controversial new old
[–] [email protected] 31 points 1 year ago* (last edited 1 year ago) (12 children)

For the uninitiated, the monty Hall problem is a good one.

Start with 3 closed doors, and an announcer who knows what's behind each. The announcer says that behind 2 of the doors is a goat, and behind the third door is ~~a car~~ student debt relief, but doesn't tell you which door leads to which. They then let you pick a door, and you will get what's behind the door. Before you open it, they open a different door than your choice and reveal a goat. Then the announcer says you are allowed to change your choice.

So should you switch?

The answer turns out to be yes. 2/3rds of the time you are better off switching. But even famous mathematicians didn't believe it at first.

[–] [email protected] 12 points 1 year ago (3 children)

I know the problem is easier to visualize if you increase the number of doors. Let's say you start with 1000 doors, you choose one and the announcer opens 998 other doors with goats. In this way is evident you should switch because unless you were incredibly lucky to pick up the initial door with the prize between 1000, the other door will have it.

[–] [email protected] 5 points 1 year ago

This is so mind blowing to me, because I get what you're saying logically, but my gut still tells me it's a 50/50 chance.

But I think the reason it is true is because the other person didn't choose the other 998 doors randomly. So if you chose any of the other 998 doors, it would still be between the door you chose and the winner, other than the 1/1000 chance that you chose right at the beginning.

[–] [email protected] 3 points 1 year ago (8 children)

I don't find this more intuitive. It's still one or the other door.

[–] [email protected] 6 points 1 year ago

The point is, the odds don't get recomputed after the other doors are opened. In effect you were offered two choices at the start: choose one door, or choose all of the other 999 doors.

[–] [email protected] 5 points 1 year ago

The odds you picked the correct door at the start is 1/1000, that means there's a 999/1000 chance it's in one of the other 999 doors. If the man opens 998 doors and leaves one left then that door has 999/1000 chance of having the prize.

[–] [email protected] 5 points 1 year ago

I think the problem is worded specifically to hide the fact that you're creating two set of doors by picking a door, and that shrinking a set actually make each individual door in that set more likely to have the prize.

Think of it this way : You have 4 doors, 2 blue doors and 2 red doors. I tell you that there is 50% chance of the prize to be in either a blue or a red door. Now I get to remove a red door that is confirmed to not have the prize. If you had to chose, would you pick a blue door or a red door? Seems obvious now that the remaining red door is somehow a safer pick. This is kind of what is happening in the initial problem, but since the second ensemble is bigger to begin with (the two doors you did not pick), it sort of trick you into ignoring the fact that the ensemble shrank and that it made the remaining door more "valuable".

load more comments (5 replies)
load more comments (1 replies)
load more comments (11 replies)
[–] [email protected] 25 points 1 year ago (6 children)

Goldbach's Conjecture: Every even natural number > 2 is a sum of 2 prime numbers. Eg: 8=5+3, 20=13+7.

https://en.m.wikipedia.org/wiki/Goldbach's_conjecture

Such a simple construct right? Notice the word "conjecture". The above has been verified till 4x10^18 numbers BUT no one has been able to prove it mathematically.

[–] [email protected] 3 points 1 year ago
load more comments (5 replies)
[–] [email protected] 16 points 1 year ago (1 children)

Multiply 9 times any number and it always "reduces" back down to 9 (add up the individual numbers in the result)

For example: 9 x 872 = 7848, so you take 7848 and split it into 7 + 8 + 4 + 8 = 27, then do it again 2 + 7 = 9 and we're back to 9

It can be a huge number and it still works:

9 x 987345734 = 8886111606

8+8+8+6+1+1+1+6+0+6 = 45

4+5 = 9

[–] [email protected] 4 points 1 year ago

I suspect this holds true to any base x numbering where you take the highest valued digit and multiply it by any number. Try it with base 2 (1), 4 (3), 16 (F) or whatever.

[–] [email protected] 16 points 1 year ago (2 children)

Quickly a game of chess becomes a never ever played game of chess before.

[–] [email protected] 10 points 1 year ago

Related: every time you shuffle a deck of cards you get a sequence that has never happened before. The chance of getting a sequence that has occurred is stupidly small.

load more comments (1 replies)
[–] [email protected] 13 points 1 year ago (2 children)

This is my silly contribution: 70% of 30 is equal to 30% of 70. This applies to other numbers and can be really helpful when doing percentages in your head. 15% of 77 is equal to 77% of 15.

[–] [email protected] 2 points 1 year ago

I’ve seen this one used in the news when they want to make one side of a statistic stand out.

load more comments (1 replies)
[–] [email protected] 11 points 1 year ago (1 children)

Seeing mathematics visually.

I am a huge fan of 3blue1brown and his videos are just amazing. My favorite is linear algebra. It was like an out of body experience. All of a sudden the world made so much more sense.

[–] [email protected] 3 points 1 year ago

His video about understanding multiple dimensions was what finally made it click for me

[–] [email protected] 9 points 1 year ago (1 children)

This is a common one, but the cardinality of infinite sets. Some infinities are larger than others.

The natural numbers are countably infinite, and any set that has a one-to-one mapping to the natural numbers is also countably infinite. So that means the set of all even natural numbers is the same size as the natural numbers, because we can map 0 > 0, 1 > 2, 2 > 4, 3 > 6, etc.

But that suggests we can also map a set that seems larger than the natural numbers to the natural numbers, such as the integers: 0 → 0, 1 → 1, 2 → –1, 3 → 2, 4 → –2, etc. In fact, we can even map pairs of integers to natural numbers, and because rational numbers can be represented in terms of pairs of numbers, their cardinality is that of the natural numbers. Even though the cardinality of the rationals is identical to that of the integers, the rationals are still dense, which means that between any two rational numbers we can find another one. The integers do not have this property.

But if we try to do this with real numbers, even a limited subset such as the real numbers between 0 and 1, it is impossible to perform this mapping. If you attempted to enumerate all of the real numbers between 0 and 1 as infinitely long decimals, you could always construct a number that was not present in the original enumeration by going through each element in order and appending a digit that did not match a decimal digit in the referenced element. This is Cantor's diagonal argument, which implies that the cardinality of the real numbers is strictly greater than that of the rationals.

The best part of this is that it is possible to construct a set that has the same cardinality as the real numbers but is not dense, such as the Cantor set.

load more comments (1 replies)
[–] [email protected] 9 points 1 year ago

The one I bumped into recently: the Coastline Paradox

"The coastline paradox is the counterintuitive observation that the coastline of a landmass does not have a well-defined length. This results from the fractal curve–like properties of coastlines; i.e., the fact that a coastline typically has a fractal dimension."

[–] [email protected] 8 points 1 year ago (2 children)

Imagine a soccer ball. The most traditional design consists of white hexagons and black pentagons. If you count them, you will find that there are 12 pentagons and 20 hexagons.

Now imagine you tried to cover the entire Earth in the same way, using similar size hexagons and pentagons (hopefully the rules are intuitive). How many pentagons would be there? Intuitively, you would think that the number of both shapes would be similar, just like on the soccer ball. So, there would be a lot of hexagons and a lot of pentagons. But actually, along with many hexagons, you would still have exactly 12 pentagons, not one less, not one more. This comes from the Euler's formula, and there is a nice sketch of the proof here: .

load more comments (2 replies)
[–] [email protected] 8 points 1 year ago

A simple one: Let's say you want to sum the numbers from 1 to 100. You could make the sum normally (1+2+3...) or you can rearrange the numbers in pairs: 1+100, 2+99, 3+98.... until 50+51 (50 pairs). So you will have 50 pairs and all of them sum 101 -> 101*50= 5050. There's a story who says that this method was discovered by Gauss when he was still a child in elementary school and their teacher asked their students to sum the numbers.

[–] [email protected] 7 points 1 year ago* (last edited 1 year ago)

Euler's identity is pretty amazing:

e^iπ + 1 = 0

To quote the Wikipedia page:

Three of the basic arithmetic operations occur exactly once each: addition, multiplication, and exponentiation. The identity also links five fundamental mathematical constants:[6]

The number 0, the additive identity.
The number 1, the multiplicative identity.
The number π (π = 3.1415...), the fundamental circle constant.
The number e (e = 2.718...), also known as Euler's number, which occurs widely in mathematical analysis.
The number i, the imaginary unit of the complex numbers.

The fact that an equation like that exists at the heart of maths - feels almost like it was left there deliberately.

[–] [email protected] 6 points 1 year ago

Here's a fun one - you know the concept of regular polyhedra/platonic solids right? 3d shapes where every edge, angle, and face is the same? How many of them are there?

Did you guess 48?

There's way more regular solids out there than the bog standard set of DnD dice! Some of them are easy to understand, like the Kepler-poisont solids which basically use a pentagramme in various orientations for the face shape (hey the rules don't say the edges can't intersect!) To uh...This thing. And more! This video is a fun breakdown (both mathematically and mentally) of all of them.

Unfortunately they only add like 4 new potential dice to your collection and all of them are very painful.

[–] [email protected] 6 points 1 year ago* (last edited 1 year ago) (1 children)

Borsuk-Ulam is a great one! In essense it says that flattening a sphere into a disk will always make two antipodal points meet. This holds in arbitrary dimensions and leads to statements such as "there are two points along the equator on opposite sides of the earth with the same temperature". Similarly one knows that there are two points on the opposite sides (antipodal) of the earth that both have the same temperature and pressure.

[–] [email protected] 6 points 1 year ago

Also honorable mentions to the hairy ball theorem for giving us the much needed information that there is always a point on the earth where the wind is not blowing.

[–] [email protected] 5 points 1 year ago

The Julia and Mandelbrot sets always gets me. That such a complex structure could arise from such simple rules. Here's a brilliant explanation I found years back: https://www.karlsims.com/julia.html

[–] [email protected] 5 points 1 year ago* (last edited 1 year ago)

Maybe a bit advanced for this crowd, but there is a three-way correspondence between logic, type theory (like in programming languages), and topology. Roughly we have

Proposition ≈ Type Proof of a prop ≈ member of a Type Implication ≈ function type and ≈ Cartesian product or ≈ disjoint union true ≈ type with one element false ≈ empty type

Once you understand it, its actually really simple and "obvious", but the fact that this exists is really really surprising imo.

You can also add topology into the mix:

[–] [email protected] 4 points 1 year ago (2 children)

The infinite sum of all the natural numbers 1+2+3+... is a divergent series. But it can also be shown to be equivalent to -1/12. This result is actually used in quantum field theory.

load more comments (2 replies)
[–] [email protected] 4 points 1 year ago

Great thread. I'm just reading and watching stuff this afternoon now

[–] [email protected] 4 points 1 year ago* (last edited 1 year ago) (1 children)

Not so much a fact, but I've always liked the prime spirals: https://en.wikipedia.org/wiki/Ulam_spiral

Also, not as impressive as the busy beaver, but Knuth's up-arrow notation is cool: https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation

[–] [email protected] 20 points 1 year ago

Knuth's arrow shows up in... Magic the Gathering. There's a challenge of "how much damage can you deal with just 3 cards and without infinitely repeating loops?". Turns out that stacking doubler effects can get us really high. https://www.polygon.com/23589224/magic-phyrexia-all-will-be-one-best-combo-attacks-tokens-vindicator-mondrak

[–] [email protected] 4 points 1 year ago

Godel's incompleteness theorem is actually even more subtle and mind-blowing than how you describe it. It states that in any mathematical system, there are truths in that system that cannot be proven using just the mathematical rules of that system. It requires adding additional rules to that system to prove those truths. And when you do that, there are new things that are true that cannot be proven using the expanded rules of that mathematical system.

"It's true, we just can't prove it'.

[–] [email protected] 4 points 1 year ago (2 children)

How Gauss was able to solve 1+2+3...+99+100 in the span of minutes. It really shows you can solve math problems by thinking in different ways and approaches.

load more comments (2 replies)
[–] [email protected] 3 points 1 year ago

To me, personally, it has to be bezier curves. They're not one of those things that only real mathematicians can understand, and that's exactly why I'm fascinated by them. You don't need to understand the equations happening to make use of them, since they make a lot of sense visually. The cherry on top is their real world usefulness in computer graphics.

[–] [email protected] 3 points 1 year ago

The 196,883-dimensional monster number (808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 ≈ 8×10^53) is fascinating and mind-boggling. It's about symmetry groups.

There is a good YouTube video explaining it here: https://www.youtube.com/watch?v=mH0oCDa74tE

[–] [email protected] 2 points 1 year ago

Szemeredis regularity lemma is really cool. Basically if you desire a certain structure in your graph, you just have to make it really really (really) big and then you're sure to find it. Or in other words you can find a really regular graph up to any positive error percentage as long as you make it really really (really really) big.

[–] [email protected] 2 points 1 year ago

One thing that definitely feels like "magic" is Monstrous Moonshine (https://en.wikipedia.org/wiki/Monstrous_moonshine) and stuff related to the j-invariant e.g. the fact that exp(pi*sqrt(163)) is so close to an integer (https://en.wikipedia.org/wiki/Heegner_number#Almost_integers_and_Ramanujan.27s_constant). I hardly understand it at all but it seems mind-blowing to me, almost in a suspicious way.

[–] [email protected] 2 points 1 year ago

Incompleteness is great.. internal consistency is incompatible with universality.. goes hand in hand with Relativity.. they both are trying to lift us toward higher dimensional understanding..

[–] [email protected] 2 points 1 year ago* (last edited 1 year ago) (3 children)

The fact that complex numbers allow you to get a much more accurate approximation of the derivative than classical finite difference at almost no extra cost under suitable conditions while also suffering way less from roundoff errors when implemented in finite precision:

\frac{1}{\varepsilon}\,{\mathrm{Im}}\left[ f(x+i\,\varepsilon) \right] = f'(x) + \mathcal{O}(\varepsilon^2)

(obviously x, epsilon and f(x) are assumed to be real)

Higher-order derivatives can also be obtained using hypercomplex numbers.

Another related and similarly beautiful result is Cauchy's integral formula which allows you to compute derivatives via integration.

load more comments (3 replies)
[–] [email protected] 2 points 1 year ago

As someone who took maths in university for two years, this has successfully given me PTSD, well done Lemmy.

load more comments
view more: next ›