submitted 5 hours ago by [email protected] to c/[email protected]

A new supercomputer named Bitterroot started operating in June at Idaho National Laboratory’s Collaborative Computing Center (C3) and is speeding up nuclear energy research by improving access to modeling and simulation tools. Bitterroot arrived at INL in March, and INL announced July 15 that it was open to users on June 18 after installation and an extensive program of testing.

Bitterroot joins other high-performance computing (HPC) resources at INL—including Sawtooth, C3’s flagship supercomputer—that can be accessed through the Department of Energy’s Nuclear Science User Facilities (NSUF) for nuclear energy–related research projects at no cost to the user. More than 1,300 researchers currently access HPC resources at the lab, according to the DOE, which celebrated the additional capacity from Bitterroot on July 15.

Bitterroot’s range: Bitterroot is a Dell-based CTS-2 that offers more than 43,000 processing cores with 3 petaflops of performance. Importantly, it is the first system supported by NSUF to offer high-bandwidth memory, and that will speed up computations in certain applications that previously have been slowed down by bandwidth limitations.

“NSUF’s flagship Sawtooth supercomputer is unable to keep with the high demand for high-priority, complex operations on its own,” the DOE said.

According to INL, Bitterroot’s memory “will improve performance for memory-bandwidth-limited applications like the Multiphysics Object Oriented Simulation Environment, better known as MOOSE, framework. MOOSE is the foundation for many of the tools that aid advanced nuclear research that support the existing reactor fleet as well as the development and eventual licensing of new designs.”

High-performance computing: “INL high performance computing is unique in that 80-90 percent of our computer cycles are dedicated to nuclear energy research,” said Matthew Anderson, manager of the High-Performance Computing group at INL. “Bitterroot brings us a new capability and additional capacity as we prepare for additional long-term investments in new computing resources.”

HPC allows engineers and scientists to model a wide variety of complex variables in advanced reactor materials and fuels before construction begins, such as how steel or concrete degrade over time and what byproducts build up in nuclear fuel. Supercomputers can support physical experiments by performing simulations to predict how materials will perform. Those predictions can be used to select the most promising experiments, which could reduce the time and cost required for technology development.

C3 was built in 2019 as a 67,000-square-foot facility equipped to host multiple supercomputers. In addition to Bitterroot, C3 is also home to Sawtooth (ranked the 37th fastest-performing supercomputer when it was installed in 2020) and INL’s other systems: Lemhi, Hoodoo, and Viz. In fiscal year 2023, the lab’s supercomputers provided users with 939 million core hours on more than 3.7 million jobs, according to INL.

Filling a gap: Bitterroot will be able to claim status as the NSUF’s newest supercomputer for just about one year. It will help bridge the gap in modeling and simulation needs while the NSUF works to bring its next flagship supercomputer—Teton—online in 2025.

Teton is anticipated to be three times as powerful as Sawtooth. Bitterroot and Sawtooth will continue operating after Teton comes online to help meet the high user demand from industry, national laboratories, and academia.

Bitterroot gets its name from an Idaho mountain range and continues INL’s tradition of naming its high-performance computers after Idaho landmarks. Sawtooth and Teton are also ranges in the Rocky Mountains.

More on the NSUF: The NSUF is the DOE Office of Nuclear Energy's only designated nuclear energy user facility. NSUF resources include test reactors, beamlines, post-irradiation examination, and HPC at university, national laboratory, and industry partner sites.

“Not every company in the nuclear industry has its own gamma irradiation facility or supercomputer, but we’re all working toward the same goal of deploying more carbon-free nuclear energy,” said NSUF director Brenden Heidrich. “You never know who will make the next breakthrough, and partnerships like NSUF are vital to help level the playing field.”

submitted 7 hours ago by [email protected] to c/[email protected]

Source: https://www.world-nuclear-news.org/Articles/KHNP-selected-to-supply-new-Czech-nuclear-units

Korea Hydro & Nuclear Power has won the Czech government's contest for at least two new nuclear power units in the country, with its bid preferred to that from France's EDF.

The tender for new nuclear was originally for a binding offer for one new unit at Dukovany and non-binding offers for up to three more - another one at Dukovany and two at Temelín. But in February the Czech government announced it was changing the tender to binding offers for up to four new units, citing the cost savings per unit if they were not procured on a unit-by-unit basis. A third bidder, Westinghouse, did not go further in the process.

EDF was proposing its EPR1200 reactor, KHNP proposed its APR1000, with both companies stressing their agreements with Czech suppliers to localise work if selected as preferred bidder.

Czech Republic Prime Minister Petr Fiala announced the decision at a press conference, and posted a message on Facebook saying: "Contract negotiations will begin with the Korean company KHNP, which, based on the evaluation of experts, offered better conditions in most of the evaluated criteria, including the price."

The estimated cost of the new units

The evaluation was led by the team from Elektrárna Dukovany II with 206 evaluators and experts not only from EDUII, but also from the ČEZ Group and consulting companies, assessing the offers.

Overall, the documentation associated with the bids totalled approximately 200,000 pages of documents and the amount of time spent evaluating bids reached approximately 900 man-months. The contracting authority sent approximately 2700 questions to individual applicants and received answers to all of them.

The Czech government said the two bids were compared on a range of criteria including price per megawatt-hour produced. It said that if two units were contracted, the KHNP bid was for a cost of around CZK200 billion per unit (USD8.6 billion).

The winning bidder's reaction

In a statement issued to World Nuclear News following the announcement, KHNP's CEO Jooho Whang said: "I believe the primary reason the Czech government selected KHNP as the preferred bidder is because they recognised KHNP’s excellence in project management and construction capabilities, demonstrated by construction of 36 Korean nuclear reactors at home and abroad.

"Following KHNP’s successful project in the UAE, I expect that KHNP will play a pivotal role not only for Korea but globally in achieving energy security and carbon neutrality by constructing Korean nuclear reactors in the Czech Republic. A nuclear project involves long-term cooperation spanning approximately 100 years, covering construction through to operation. KHNP aims to solidify a 100-year friendship between the Czech Republic and Korea by constructing an APR1000 nuclear power plant. We will remain dedicated and exert our utmost efforts until the closing moments as we approach the upcoming negotiations with the project owner to ensure that the APR1000 reactor is built in the country."

What the Czech government has said

Fiala said: "Our goal was to come up with a solution that would be economically rational and ensure enough energy at an acceptable price. The offer of the Korean company KHNP meets these parameters. At the same time, it will bring a significant impetus to the development of the Czech economy thanks to the involvement of Czech industry to the extent of approximately 60%."

Minister of Industry and Trade Jozef Síkela said "it is clear that the preferred bidder offered a better price and more reliable guarantees of cost control, as well as the schedule of the entire project", adding "nuclear now provides us with more than a third of our electricity consumption, and in the future it should be around half. That is why its development is absolutely essential for us. At the same time, the variant of building two blocks in one location will ensure that many works will not have to be carried out twice, and will allow economies of scale to be used, thus leading to a significant reduction in costs. Specifically, about 20% per block. That's why we chose this option. It will be possible to decide on the possible use of the option for the construction of two more blocks, among other things, in connection with the development of the Czech energy industry."

CEO and Chairman of nuclear operator ČEZ, Daniel Beneš, said: "We have a clearly defined schedule, which provides for a fixed date for the start and completion of construction, and it is important for us that the selected contractor commits to it under the threat of sanctions. The offer of the preferred bidder was more satisfactory in this respect.'

The background

The Czech Republic currently gets about one-third of its electricity from the four VVER-440 units at Dukovany, which began operating between 1985 and 1987, and the two VVER-1000 units in operation at Temelín, which came into operation in 2000 and 2002.

What next?

The government has said its aim is for the contracts for the initial unit(s) to be finalised this year and signed by the end of March 2025. The target for test operation of the first new unit is 2036 with commercial operation in 2038.

Westinghouse 'reserves right to challenge decision'

Following the announcement Westinghouse issued a statement saying it reaffirmed its view that "KHNP is not authorised to use Westinghouse reactor technology... without Westinghouse’s agreement". It says KHNP has failed to comply with US export control rules, which it says require "authorisation from the US government before sharing technology beyond the agreed to Korea transfer" which is at the heart of on-going legal action in the USA involving the two companies. Westinghouse added that it "reserves its rights to challenge this in front of the relevant national and international jurisdictions".

submitted 7 hours ago by [email protected] to c/[email protected]

Source: https://www.world-nuclear-news.org/Articles/Construction-starts-on-Xudabao-2

The first batch of concrete has been poured for the nuclear island of unit 2 at the Xudabao nuclear power plant in China's Liaoning Province, marking the official start of construction of the unit.

The construction of units 1 and 2 of the Xudabao (also known as Xudapu) plant was approved by China's State Council on 31 July last year.

On 6 November, the Ministry of Ecology and Environment announced that the National Nuclear Safety Administration had decided to issue a construction licence for Xudabao units 1 and 2, which will both feature 1250 MWe CAP1000 reactors - the Chinese version of the Westinghouse AP1000.

A ceremony was held on 15 November at the Xudabao site near Xingcheng City, Huludao, to mark the start of construction of unit 1.

The Xudabao project was originally expected to comprise six CAP1000 reactors, with units 1 and 2 in the first phase. Site preparation began in November 2010. The National Development and Reform Commission gave its approval for the project in January 2011. China National Nuclear Corporation (CNNC) noted that the total investment in units 1 and 2 exceeds CNY48 billion (USD6.6 billion).

However, with a change in plans, construction of two Russian-supplied VVER-1200 reactors as Xudabao units 3 and 4 began in July 2021 and May 2022, respectively.

"The Xudabao nuclear power plant has officially entered a new stage of comprehensive construction of two models and four units," CNNC said. "At present, the construction of the four units of the Xudabao nuclear power project is progressing in an orderly manner. Units 1 and 2 are scheduled to be put into operation and generate electricity in 2028 and 2029, respectively; units 3 and 4 have all entered the equipment installation stage, and all important milestone nodes have been achieved on schedule with high quality. They are scheduled to be put into operation and generate electricity in 2027 and 2028, respectively."

The Xudabao plant is owned by Liaoning Nuclear Power Company Ltd, in which CNNC holds a 70% stake with Datang International Power Generation Co holding 20% and State Development and Investment Corporation owning 10%. The general contractor is China Nuclear Power Engineering Company Ltd, a subsidiary of CNNC.

Two further CAP1000 reactors are proposed for units 5 and 6 at the Xudabao plant.

After all the six units of the plant are put into operation, they will provide more than 54 TWh of clean electricity every year, saving about 19.2 million tonnes of coal annually, and reducing carbon dioxide emissions by about 56.7 million tonnes annually, CNNC said.

With construction of Xudabao 2 under way, CNNC now has 12 reactors being built in China, with a combined generating capacity of 13.9 GWe.

submitted 1 day ago by [email protected] to c/[email protected]

Source: https://www.world-nuclear-news.org/Articles/Partnership-aims-to-boost-Italian-nuclear-educatio

A cooperation agreement has been signed between Edison, Framatome and Politecnico di Milano for scientific and technological research and training in the field of nuclear energy. The move comes amid growing support in Italy to reintroduce nuclear energy.

Under the agreement, the partners will pool their respective technical knowledge and expertise in order to jointly develop research, development and innovation activities for the nuclear sector.

In particular, the cooperation agreement provides for joint projects through internships, master's degree and doctoral dissertations, seminars, workshops and other similar initiatives on technical topics of mutual interest. With the aim of improving the exchange of knowledge and know-how, the agreement will also provide for the organisation of meetings and training courses as well as visits for students and their respective employees to Framatome's production sites and plants and the Politecnico di Milano's and Edison's research laboratories.

"This agreement represents another step towards cooperation and research on new nuclear power and - with the support of universities - the development of the necessary expertise for new nuclear power in Italy," said Lorenzo Mottura, EVP Strategy, Innovation, Research & Development and Digital at Edison. "Thanks to this agreement, students at the Politecnico di Milano will benefit from direct access to and exchange with Edison - a leading operator in the Italian energy sector that is actively engaged in the development of new nuclear power in Italy - and Framatome, a European leader in the development and industrialisation of nuclear technology."

"The Politecnico di Milano is a prestigious university that promotes academic excellence in education and in the field of nuclear engineering," added Elisabeth Terrail, Senior Executive Vice President, Human Resources at Framatome. "Thanks to this agreement, students at the Politecnico will be called upon to apply what they have learnt to real projects in support of the existing fleet and the development of nuclear energy in Europe."

Marco Ricotti, Professor of Nuclear Engineering at the Politecnico di Milano said: "The Politecnico di Milano, the first university in Italy to engage in university education and research in the nuclear sector since the 1950s, confirms and increases its historical strength and attractiveness, both towards the new generations - tripling the number of students enrolled in this field in the last five years - and towards industrial stakeholders, committed to evaluating and developing new nuclear technologies, which are fundamental to contributing to the solution of the energy problem, in terms of environmental sustainability, strategic safety, and socio-economic impact."

Italy operated a total of four nuclear power plants starting in the early 1960s but decided to phase out nuclear power in a referendum that followed the 1986 Chernobyl accident. It closed its last two operating plants, Caorso and Trino Vercellese, in 1990.

In late March 2011, following the Fukushima Daiichi accident, the Italian government approved a moratorium of at least one year on construction of nuclear power plants in the country, which had been looking to restart its long-abandoned nuclear programme.

In May last year, the Italian Parliament approved a motion to urge the government to consider incorporating nuclear power into the country's energy mix. In September, the first meeting was held of the National Platform for a Sustainable Nuclear, set up by the government to define a time frame for the possible resumption of nuclear energy in Italy and identify opportunities for the country's industrial chain already operating in the sector. It is planned to develop guidelines within nine months.

Italy's government included potential new nuclear capacity in its National Integrated Energy and Climate Plan, which was submitted to the European Commission on 1 July.

Speaking the following day at the Global Energy Transition Congress in Milan, Italy's Minister for Environment and Energy Security, Gilberto Pichetto Fratin, said: We expect to be able to reach about 8 GW from nuclear power by 2050, covering more than 10% of the nation's electricity demand. This percentage may increase to over 20-22% by fully exploiting the potential of nuclear power in our country."

submitted 1 day ago by [email protected] to c/[email protected]

Source: https://www.world-nuclear-news.org/Articles/VVER-fuel-reliable-in-flexible-power-output-tests,

Experiments to test the impact of load following on VVER-1200 fuel show it "did not have a significant impact on its main characteristics", Russia's nuclear power corporation has reported.

Tests were carried out in the MIR research reactor at the Dimitrovgrad Research Institute of Atomic Reactors for Rosatom's fuel division TVEL. "The test scenario in the research reactor provided a complete simulation of the operation of nuclear fuel in the daily manoeuvring mode of the VVER-1200 power unit in the 18-month fuel cycle," Rosatom said.

The experiment tested the impact of changing the power of the reactor between 100% and 40%, seeking to reflect the patterns of electricity consumption - so 7 hours at 40% power overnight, 4 hours at 100% in the morning, 4 hours at 40% during the day and 9 hours at 100% power in the evening. The tests ran for 224 days during which 218 cycles of power increase and decreases were performed.

Alexander Ugryumov, senior vice president for scientific and technical activities at TVEL, said: "The results of the study confirmed that nuclear fuel produced by Rosatom fully retains its integrity and operability under conditions of multiple rapid changes in the linear power of the fuel element. This is another step towards justifying the operation of Russian high-power reactors in a manoeuvrable mode. Our industry studies on increasing the efficiency of nuclear generation are of considerable interest to foreign operators of Russian-designed NPPs."

The results of the tests mean that work will continue towards the possible future introduction of routine daily load following in nuclear power plant output.

The ability to ramp up - and down - nuclear power output is seen as especially useful in places where a high proportion of energy generation is from nuclear and where there are not gas or hydro power plants which can have their output reduced at times of low demand. Rosatom says: "It is expected that manoeuvring the capacity will help to increase the flexibility and efficiency of energy systems, and ultimately become another factor in the competitiveness of nuclear energy."

The VVER-1200 reactors have been designed to be capable of load following, unlike the older RBMK units which could only operate in baseload mode, which means running at full power the entire time between refuelling and maintenance outages.

submitted 1 day ago by [email protected] to c/[email protected]

South Africa’s nuclear regulator has given state-owned Eskom permission to operate one of two units at the only nuclear station on the continent for another 20 years as electricity supply in the country remains fragile.

The National Nuclear Regulator granted an operating licence to the utility for it to operate Unit 1 at the Koeberg nuclear station near Cape Town until July 2044.

NNR chief executive officer Ditebogo Kgomo said in a press briefing on 15 July that the regulator had deferred its decision on Unit 2.

The 40-year operating licence for Koeberg-1 was due to expire this month, but in 2021 Eskom applied for a 20-year extension to operations as part of efforts to end crippling power shortages.

The regulator is still assessing Eskom’s application to extend the life of Koeberg-2 by 20 years. That unit’s existing licence is valid until November 2025.

Eskom’s mostly coal-fired plants, which generate approximately 85% of the nation’s electricity, have been prone to breakdowns, resulting in power cuts in recent years.

Koeberg-1 began commercial operation in 1984 and Koeberg-2 in 1985. Both are pressurised water reactor units and according to Eskom have a combined capacity of 1,860 MW.

Koeberg is South Africa’s only commercial nuclear power station and the only such facility in Africa, although Russia is building a new nuclear station in Egypt.

Nuclear energy provided about 5% of South Africa’s electricity generation in 2022, according to International Atomic Energy Agency data.

submitted 1 day ago* (last edited 1 day ago) by [email protected] to c/[email protected]

Source: https://www.nucnet.org/news/world-s-first-mox-fuel-containing-minor-actinides-loaded-at-beloyarsk-4-7-2-2024

Russia has loaded what it claims are the world’s first fuel assemblies containing uranium-plutonium mixed oxide (MOX) fuel along with minor actinides into the Beloyarsk-4 BN-800 fast breeder reactor (FBR) near Yekaterinburg in central Russia.

Russia’s state nuclear operator Rosenergoatom said the fuel loading with the “innovative” assemblies is designed to confirm the possibility of industrial disposal of minor actinides.

Minor actinides are the most radiotoxic and long-lived components contained in used fuel. The possibility of eliminating them using fast neutron reactors will reduce the volume of radioactive waste from the entire infrastructure of the nuclear fuel cycle resulting from the operation of nuclear power plants, said Beloyarsk NPP director Ivan Sidorov.

Three experimental MOX assemblies containing the minor actinides americium-241 and neptunium-237 manufactured at Rosatom’s Mining & Chemical Combine (MCC) were loaded into the reactor core after approval by the regulator. State nuclear corporation Rosatom said the Federal Service for Ecological, Technological and Nuclear Supervision (Rostekhnadzor) had confirmed the safety of the assemblies.

In the BN-800 reactor, the assemblies will undergo experimental industrial operation during three cycles.

Beloyarsk-4 is an 820-MW FBR that began commercial operation in October 2016.

An FBR is designed to generate more fissile material than it consumes, allowing a significant increase in the amount of energy obtained from natural, depleted and recycled uranium.

The technology also enables plutonium and other actinides to be used and recycled, considerably reducing the amount of long-lived radioactive waste.

MOX fuel is manufactured from plutonium recovered from used reactor fuel, mixed with depleted uranium. It provides a means of using surplus weapons-grade plutonium for civilian energy generation. This eliminates the need for the storage of surplus plutonium, which needs to be secured against the risk of theft for use in nuclear weapons.

submitted 1 day ago by [email protected] to c/[email protected]

While no development details have been released, Constellation is asking to rezone 658.8 acres of land it owns around the Byron nuclear plant in Illinois for possible long-term use.

Constellation spokesman Paul Dempsey said via email: “Reclassifying some existing parcels from agricultural to industrial would allow Constellation to use the land for future development.”

A closer look: The Ogle County, Ill., board heard an update from board member Dan Janes at its June meeting regarding ongoing petition work by Constellation, the owner of the Byron nuclear power plant, to change the zoning classification of some of its property.

Janes said that Constellation wants to change all of its agricultural-zoned land to industrial zoning due to some "very positive things that could happen up and around the nuclear plant.” The county board is working through the process as quickly as possible and it could be seen for approval at the July 16 board meeting.

"This would give [Constellation] the opportunity to look into some very demanding customers to help their industry," Janes said. "I cannot share all of the information. This would probably have a very positive impact on our county's equalized assessed value. It could have the opportunity to be as big as big can get in Ogle County. We need to do this so we're first on the list."

The ground that would see zoning changes is mostly on top of the quarry on which the nuclear plant is built.

Noted: Constellation’s chief executive Joe Dominguez said in the company’s most recent earnings call in May that it is considering adding advanced nuclear technology at its current sites to provide the quickest near-term support for increased power generation demands as data centers and artificial intelligence growth strain the U.S. power grid. Several nuclear companies, including Constellation, have also expressed interest in developing data center campuses on adjoining property to help meet energy demand with carbon-free generation.

Byron history: In 2020, Exelon (then owner of Byron and Illinois’s five other nuclear plants) announced plans to prematurely retire the Byron plant due to economic constraints.

In 2021, the Illinois governor signed into law the Climate and Equitable Jobs Act (S.B. 2408) to overhaul the state’s energy policies and aid three of Exelon’s struggling nuclear plants—Braidwood, Byron, and Dresden—and phase out fossil-fuel power generation in the state by 2050.

submitted 1 day ago by [email protected] to c/[email protected]

Jenifer Shafer, the associate director for technology at the Advanced Research Projects Agency­–Energy (ARPA-E), recently delivered a TEDx talk in which she explained the basic concepts of nuclear waste recycling, including related nonproliferation issues. As Shafer wrote in a post on LinkedIn, “In my talk, I explored the misconceptions surrounding nuclear waste and discuss[ed] the possible emerging opportunities regarding nuclear fuel recycling. It’s crucial that we understand the real potential of nuclear energy, and leveraging our ‘nuclear treasure,’ in shaping a sustainable future.”

Two concerns: Shafer, whose research activities at ARPA-E focus on the development of proliferation-resistant technologies in advanced reactor deployment and on the management of nuclear waste and used nuclear fuel, begins her TEDx talk with an observation. “Pretty much any time I talk to someone about nuclear energy, they have one of two concerns. The first one: Is nuclear safe? And to that I say, yes, nuclear is arguably the safest energy technology in existence, and future reactors are planned to be even safer. The second question: What about the waste?” To that question she has a simple response: “Nuclear waste is not waste.”

She continues, “Ninety-five percent of the energy value [of nuclear waste] is still sitting there waiting to be used. . . . There’s so much potential there. We just need nuclear recycling to help us get us there.”

A different moniker: Shafer goes on to suggest that nuclear waste might be more properly called “nuclear treasure,” because of its continued value as an energy resource, explaining that most of the elements in waste are “uranium and plutonium, and you can make energy from them again. But a small fraction of them, that 5 percent, are these expensive elements like rhodium or palladium or critical life-saving elements like medical radioisotopes.

“If we recover the material and separate the uranium and plutonium and put them back into the reactor and then sell the expensive and life-saving elements, then nuclear recycling starts to make a lot of sense.”

Plutonium problem: Shafer addresses the issue of proliferation by noting that “many of the recycling technologies, some of our most developed ones, generate pure plutonium streams. That’s right—that plutonium that has been used in nuclear weapons,” which is a clear concern for nonproliferation. “If [that plutonium] ends up in a nuclear bomb instead of a nuclear reactor, we could have a life-altering, Earth-shattering geopolitical consequence on our hands.

“And this is the work that my research group is working on at the Colorado School of Mines,” she continues. In addition to her ARPA-E role, she leads a research group at the university working on the development of more efficient nuclear separations that generate less waste “by co-recovering all the energy-producing elements—the uranium, the plutonium, and some like neptunium and americium.”

Back in the reactor: By co-recovering the plutonium from the waste stream, “we actually make a material that is much, much less attractive for making a nuclear bomb,” Shafer explains. “Additionally, one of the most important things we can do is get plutonium back in the reactor, so that it’s being split into lighter elements that you can’t make a weapon out of.”

Shafer further notes that new sensors and digital technologies make it easier for operators to “keep better track of the plutonium in the nuclear recycling facility,” thereby adding to nonproliferation safeguards.

The full 10-minute talk is available on the TEDx Talks channel on YouTube: https://yt.artemislena.eu/watch?v=VRfjqd00kc8

submitted 1 day ago by [email protected] to c/[email protected]

Comprehensive analysis of 245 operational coal power plants in the United States by a team of researchers at the University of Michigan has scored each site’s advanced reactor hosting feasibility using a broad array of attributes, including socioeconomic factors, safety considerations, proximity to populations, existing nuclear facilities, and transportation networks. The results could help policymakers and utilities make decisions about deploying nuclear reactors at sites with existing transmission lines and a ready workforce.

The research—“Investigation of potential sites for coal-to-nuclear energy transitions in the United States”—was published in the June 2024 issue of the journal Energy Reports and is described in a July 9 news article from University of Michigan.

Indiana is on top: The R. M. Schahfer coal plant in Indiana emerged as the most feasible smaller-capacity site (categorized as a site generating 1,000 MWe or less) for a coal-to-nuclear transition, while the AES Petersburg plant in Indiana was at the top of the list of larger-capacity sites (those with generating capacity above 1,000 MWe).

The fact that Indiana is a key contender for coal-to-nuclear should come as no surprise because of the state’s current reliance on coal generation. Indiana burned coal for 52 percent of its electricity net generation in 2022 and was the nation’s third-largest coal consumer after Texas and Missouri, according to the Energy Information Administration. Indiana hosts one research reactor (at Purdue University) and no nuclear power reactors.

Cleaning up coal sites: We’re hearing a lot about coal-to-nuclear transitions lately, including from the Department of Energy. Nuclear power can replace a coal plant’s stable baseload generation, but with zero carbon emissions. Choosing an operational coal plant as a new nuclear site can save time and money, according to the UMich study, by taking advantage of existing equipment like transmission lines and power system components. Host communities can retain jobs and tax bases as coal plants are phased out. But the feasibility of reactor hosting can vary from site to site.

“This dataset can support economic revitalization plans in regions affected by coal plant closures and provide information for engagement efforts in coal communities considering hosting clean energy facilities,” said Aditi Verma, assistant professor of nuclear engineering and radiological sciences at UMich and senior author of the study.

“With no new coal plants planned and many utilities aiming to retire all coal power plants within 15 years in the U.S., transitioning to cleaner energy sources is crucial,” said Muhammad Rafiul Abdussami, a doctoral student of nuclear engineering and radiological sciences at UMich and corresponding author of the study.

STAND for nuclear: To include both technical and socioeconomic factors, the researchers used the Siting Tool for Advanced Nuclear Development (STAND) for their analysis. The tool’s ability to evaluate multiple sites simultaneously while balancing a suite of objectives offers a more scalable and robust analysis than previous studies, which focused on a few representative plants, according to the university.

STAND was collaboratively developed by UMich, Argonne National Laboratory, Oak Ridge National Laboratory, and the National Reactor Innovation Center, and it allows users to optimize socioeconomic factors, safety, and proximity.

The data: Results revealed a broad spectrum of suitability levels and trade-offs across different locations, highlighting both the feasibility and complexity of transitioning from coal to nuclear capacity. Regional attributes like energy prices and nuclear policies strongly influenced suitability. For the smaller electric capacity group, feasibility scores ranged from 51.52 to 84.31 out of 100, with a median of 66.53. Scores for the larger electric capacity group ranged from 47.29 to 76.92, with a median of 63.97.

“My hope is that this work, which looks at the potential for coal-to-nuclear transitions in a very granular way for each coal plant across the country, can inform the national and state-level conversations that are unfolding in real time,” Verma said. Supplemental data is available to researchers in the online version of the paper.

The work was sponsored by the Department of Energy Office of Nuclear Energy (project number DE-NE0009382) and was funded through the Nuclear Energy University Program.

submitted 1 day ago by [email protected] to c/[email protected]

Source: https://www.world-nuclear-news.org/Articles/Study-to-assess-participation-in-Polish-supply-cha

A research project is being launched by the Polish Economic Institute to gauge the interest of Polish companies in participating in the construction of the country's first nuclear power plant.

The study - being carried out on behalf of Polskie Elektrownie Jądrowe (PEJ), in cooperation with Bank Gospodarstwa Krajowego - aims to determine the potential of the Polish industry for the needs of the nuclear power plant project in Pomerania, as well as solutions that meet the needs of companies related to participation in the investment, such as financial support systems or assistance in obtaining appropriate certificates.

PEJ said analysis of the study results will allow it to recognise the interest of Polish companies in participating in the process of building the first nuclear power plant in Pomerania and will indicate the tools necessary to participate in the planned supply chain.

Poland currently has large-scale plans to develop nuclear energy capacity. In September 2021, it was announced that six large pressurised water reactors with a combined installed capacity of 6-9 GWe could be built by 2040 as part of the country's plan to reduce its reliance on coal. According to the adopted schedule, the construction of the first nuclear power plant will start in 2026, with the first reactor - with a capacity of 1.0-1.6 GWe - being commissioned in 2033. Subsequent units will be implemented every 2-3 years. The coastal towns of Lubiatowo and Kopalino in Poland's Choczewo municipality in the province of Pomerania were named as the preferred location for the country's first large nuclear power plant.

In November 2022, the Polish government announced the first plant, with a capacity of 3750 MWe, will be built in Pomerania using AP1000 technology from the US company Westinghouse. An agreement setting a plan for the delivery of the plant was signed in May last year by Westinghouse, Bechtel and PEJ.

The Polish Economic Institute, a public economic think tank, in direct cooperation with the investor, PEJ, will examine the level of potential interest of Polish companies in getting involved in this process, and will also identify barriers that may hinder them. The analysis will be the basis for preparing profiled actions aimed at supporting interested companies and suppliers, so that they can participate competitively in the supply chain.

The study will be conducted in the form of a survey consisting of several dozen detailed questions. The survey is open to all companies interested in cooperation in the construction of a Polish nuclear power plant. The Polish Economic Institute, which has extensive analytical experience in the field of nuclear energy, will be responsible for its implementation and subsequent development of the results.

"The detailed study takes into account the specificity of the sector and was preceded by qualitative research and industry consultations," said Adam Juszczak from the Polish Economic Institute. "The current stage, the quantitative study, will allow us to collect detailed information and opinions from entrepreneurs in this industry, regardless of their size and the area in which they operate.

"We hope that the study will be met with a great response from Polish companies and that we will be able to create a possibly broad picture of the challenges facing Polish companies on the eve of launching this strategic investment and also estimate the potential participation of domestic entities in the entire process, taking into account international legal regulations."

"The investment we are implementing is a huge opportunity not only for the country, but also for many Polish entrepreneurs," said Leszek Juchniewicz, president of the management board of PEJ. "That is why we would like them to have the opportunity to participate in the supply chain for the entire nuclear project. For this purpose, we decided to examine their approach to business cooperation in this area. The study will help determine the current state of knowledge of Polish companies, their level of preparation for the investment, as well as possible barriers and limitations."

submitted 1 day ago by [email protected] to c/[email protected]

Source: https://www.world-nuclear-news.org/Articles/Dummy-fuel-loaded-into-first-new-unit-at-Kursk-II

Preparations for testing of the reactor plant equipment at the new VVER-TOI reactor at Kursk II nuclear power plant continue with the loading of simulated fuel assemblies which do not contain uranium.

The process of installing the dummy fuel and simulators of the control rods was expected to take 10 days.

Alexander Uvakin, director of the Kursk nuclear power plant, said: "Next, during the cold-hot testing, we will check the operability of the reactor plant equipment and safety systems in operating modes ... when forming the reactor simulation zone, all operations are carried out as if the work was carried out with nuclear fuel, which allows us to practice nuclear fuel handling procedures on simulators in conditions as close as possible to operation."

Kursk II is a new nuclear power plant in western Russia, about 60 kilometres (37.5 miles) from the Ukraine border, that will feature two VVER-TOI reactors, the latest version of Russia's large light-water designs. They have upgraded pressure vessels and a higher power rating of 3300 MWt that enables them to generate 1300 MWe gross.

Construction of the first unit began in 2018, its polar crane was installed in October 2021 and the reactor vessel was put in place in June 2022. Concreting of the outer dome of the first unit was completed in August 2023.

Oleg Shperle, vice president of Atomstroyexport and director of the Kursk NPP-2 construction project, said: "The start of loading the simulators indicates that a certain volume of technical readiness of the transport and technological equipment included in the fresh nuclear fuel handling scheme and reactor plant equipment has been achieved. After the completion of loading ... the reactor assembly will continue and flushing and hydraulic testing of the primary and secondary circuit pipelines will begin."

All four units at the existing Kursk nuclear power plant are scheduled to have shut by 2031. The first unit was shut down after 45 years of operation in December 2021. The original design life for the four RBMK-1000 reactors at the plant was for 30 years but had been extended by 15 years following life extension programmes.

The first nuclear fuel for Kursk II was delivered to the site last month, with the expectation that the first would be loaded into the first new unit later this year. Rosatom said the TVS VVER-TOI nuclear fuel had been developed based on that for VVER-1000 and VVER-1200 reactors, with the design of the fuel cassettes providing "increased fuel loading, increased thermal reliability and more effective control of the reactor core during operation to improve the technical and economic characteristics of the nuclear power plant". There will be 163 fuel assemblies when fully loaded, and 313 fuel elements in each fuel assembly. The fuel cycle during operation will be 18 months.

[-] [email protected] 2 points 2 weeks ago

Really impressive that their design can be transported as a 200 MWe module. That truly brings the SMR promise closer!

[-] [email protected] 5 points 2 weeks ago

Well, he knows about this community now! 🙂

[-] [email protected] 5 points 2 weeks ago

"Like, you have no idea what we’re talking about, but you’re very opinionated about it."

Thought that was an apt summary of your posts on Kyle.

[-] [email protected] 1 points 1 month ago

Great question. This might actually play a role here. Nuclear energy has the lowest land impact of any energy source. They better involve the local population in this though.

[-] [email protected] 1 points 1 month ago

Adding pictures seems to work wonky: I now have to add them several times as they appear to remove themselves when writing out the post.

[-] [email protected] 1 points 1 month ago

Yay, thanks!

[-] [email protected] 1 points 1 month ago

What a crime against the climate and environment ☹️

[-] [email protected] 1 points 1 month ago

Orban hasn't been around for that long.

[-] [email protected] 2 points 1 month ago

Correct, Hungary's political development is on a worrying trajectory.

[-] [email protected] 1 points 2 months ago

De meeste SMRs zijn gewoon bewezen tech (PWR ontwerpen, sommige BWR, die we al decennia bouwen). Maar inderdaad is dit duur. Ga maar eens opzoeken wat het gaat kosten met zon en wind...

[-] [email protected] 1 points 2 months ago
[-] [email protected] 2 points 2 months ago

24 GWe of nuclear capacity? That's very ambitious. It would offer Uganda a rise in available energy from 5 TWh to almost 200 (!) TWh. I wish them all the best.

view more: next ›


joined 1 year ago