this post was submitted on 02 Jul 2024
57 points (100.0% liked)

chapotraphouse

13468 readers
808 users here now

Banned? DM Wmill to appeal.

No anti-nautilism posts. See: Eco-fascism Primer

Vaush posts go in the_dunk_tank

Dunk posts in general go in the_dunk_tank, not here

Don't post low-hanging fruit here after it gets removed from the_dunk_tank

founded 3 years ago
MODERATORS
 

This little guy craves the light of knowledge and wants to know why 0.999... = 1. He wants rigour, but he does accept proofs starting with any sort of premise.

Enlighten him.

you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 6 points 3 months ago (9 children)

I suppose I will post one myself, as I do not expect anybody else to have that one in mind.

The decimals '0.999...' and '1' refer to the real numbers that are equivalence classes of Cauchy sequences of rational numbers (0.9, 0.99, 0.999,...) and (1, 1, 1,...) with respect to the relation R: (aRb) <=> (lim(a_n-b_n) as n->inf, where a_n and b_n are the nth elements of sequences a and b, respectively).

For a = (1, 1, 1,...) and b = (0.9, 0.99, 0.999,...) we have lim(a_n-b_n) as n->inf = lim(1-sum(9/10^k) for k from 1 to n) as n->inf = lim(1/10^n) as n->inf = 0. That means that (1, 1, 1,...)R(0.9, 0.99, 0.999,...), i.e. that these sequences belong to the same equivalence class of Cauchy sequences of rational numbers with respect to R. In other words, the decimals '0.999...' and '1' refer to the same real number. QED.

[โ€“] [email protected] 4 points 3 months ago* (last edited 3 months ago)

I like how compact this one is ;)

load more comments (8 replies)