this post was submitted on 21 Sep 2024
1000 points (98.7% liked)
Science Memes
11217 readers
3471 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- !reptiles and [email protected]
Physical Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and [email protected]
- [email protected]
- !self [email protected]
- [email protected]
- [email protected]
- [email protected]
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Gotta love Dirichlet boundary conditions (the function has to have this value), Neumann boundary conditions (the derivative has to have this value) and Cauchy boundary conditions (both).
On the other hand, there's a bunch of things that are so abstract that it's difficult to give them a descriptive name, like rings, magmas and weasels
Oh i would say "ring" is in fact quite a descriptive term.
Apparently, in older german, "ringen" meant "to make progress of some sort/to fight for something". And a ring has two functions: addition and multiplication. These are the foundational functions that you can use to construct polynomials, which are very important functions. You could look at functions as a machine where you put something in and get something out.
In other words, you put something into a function, the function internally "makes some progress", and spits out a result. That is exactly what you can do with a "ring".
So it kinda makes sense, I guess.