bunchberry

joined 1 month ago
[–] [email protected] 2 points 6 hours ago

You don't have to be sorry, that was stupid of me to write that.

[–] [email protected] 1 points 6 hours ago (1 children)

Because the same functionality would be available as a cloud service (like AI now). This reduces costs and the need to carry liquid nitrogen around.

Okay, you are just misrepresenting my argument at this point.

[–] [email protected] 1 points 16 hours ago* (last edited 16 hours ago) (5 children)

Why are you isolating a single algorithm? There are tons of them that speed up various aspects of linear algebra and not just that single one, and many improvements to these algorithms since they were first introduced, there are a lot more in the literature than just in the popular consciousness.

The point is not that it will speed up every major calculation, but these are calculations that could be made use of, and there will likely even be more similar algorithms discovered if quantum computers are more commonplace. There is a whole branch of research called quantum machine learning that is centered solely around figuring out how to make use of these algorithms to provide performance benefits for machine learning algorithms.

If they would offer speed benefits, then why wouldn't you want to have the chip that offers the speed benefits in your phone? Of course, in practical terms, we likely will not have this due to the difficulty and expense of quantum chips, and the fact they currently have to be cooled below to near zero degrees Kelvin. But your argument suggests that if somehow consumers could have access to technology in their phone that would offer performance benefits to their software that they wouldn't want it.

That just makes no sense to me. The issue is not that quantum computers could not offer performance benefits in theory. The issue is more about whether or not the theory can be implemented in practical engineering terms, as well as a cost-to-performance ratio. The engineering would have to be good enough to both bring the price down and make the performance benefits high enough to make it worth it.

It is the same with GPUs. A GPU can only speed up certain problems, and it would thus be even more inefficient to try and force every calculation through the GPU. You have libraries that only call the GPU when it is needed for certain calculations. This ends up offering major performance benefits and if the price of the GPU is low enough and the performance benefits high enough to match what the consumers want, they will buy it. We also have separate AI chips now as well which are making their way into some phones. While there's no reason at the current moment to believe we will see quantum technology shrunk small and cheap enough to show up in consumer phones, if hypothetically that was the case, I don't see why consumers wouldn't want it.

I am sure clever software developers would figure out how to make use of them if they were available like that. They likely will not be available like that any time in the near future, if ever, but assuming they are, there would probably be a lot of interesting use cases for them that have not even been thought of yet. They will likely remain something largely used by businesses but in my view it will be mostly because of practical concerns. The benefits of them won't outweigh the cost anytime soon.

[–] [email protected] 11 points 1 day ago* (last edited 1 day ago) (10 children)

Uh... one of those algorithms in your list is literally for speeding up linear algebra. Do you think just because it sounds technical it's "businessy"? All modern technology is technical, that's what technology is. It would be like someone saying, "GPUs would be useless to regular people because all they mainly do is speed up matrix multiplication. Who cares about that except for businesses?" Many of these algorithms here offer potential speedup for linear algebra operations. That is the basis of both graphics and AI. One of those algorithms is even for machine learning in that list. There are various algorithms for potentially speeding up matrix multiplication in the linear. It's huge for regular consumers... assuming the technology could ever progress to come to regular consumers.

[–] [email protected] 1 points 3 days ago* (last edited 3 days ago)

OrchOR makes way too many wild claims for there to easily be any evidence for it. Even if we discover quantum effects (in the sense of scalable interference effects which have absolutely not been demonstrated) in the brain that would just demonstrate there are quantum effects in the brain, OrchOR is filled with a lot of assumptions which go far beyond this and would not be anywhere near justified. One of them being its reliance on gravity-induced collapse, which is nonrelativistic, meaning it cannot reproduce the predictions of quantum field theory, our best theory of the natural world.

A theory is ultimately not just a list of facts but a collection of facts under a single philosophical interpretation of how they relate to one another. This is more of a philosophical issue, but even if OrchOR proves there is gravitational induced collapse and that there is quantum effects in the brain, we would still just take these two facts separately. OrchOR tries to unify them under some bizarre philosophical interpretation called the Penrose–Lucas argument that says because humans can believe things that are not proven, therefore human consciousness must be noncomputable, and because human consciousness is not computable, it must be reducible to something that you cannot algorithmically predict its outcome, which would be true of an objective collapse model. Ergo, wave function collapse causes consciousness.

Again, even if they proved that there is scalable quantum interference effects in the brain, even if they proved that there is gravitationally induced collapse, that alone does not demonstrate OrchOR unless you actually think the Penrose-Lucas argument makes sense. They would just be two facts which we would take separately as fact. It would just be a fact that there is gravitionally induced collapse, a fact that there is scalable quantum interference effects in the brain but there would be no reason to adopt any of their claims about "consciousness."

But even then, there is still no strong evidence that the brain in any way makes use of quantum interference effects, only loose hints that it may or not be possible with microtubules, and there is definitely no evidence of the gravitationally induced collapse.

[–] [email protected] 1 points 5 days ago* (last edited 5 days ago) (1 children)

A person who would state they fully understand quantum mechanics is the last person i would trust to have any understanding of it.

I find this sentiment can lead to devolving into quantum woo and mysticism. If you think anyone trying to tell you quantum mechanics can be made sense of rationally must be wrong, then you implicitly are suggesting that quantum mechanics is something that cannot be made sense of, and thus it logically follows that people who are speaking in a way that does not make sense and have no expertise in the subject so they do not even claim to make sense are the more reliable sources.

It's really a sentiment I am not a fan of. When we encounter difficult problems that seem mysterious to us, we should treat the mystery as an opportunity to learn. It is very enjoyable, in my view, to read all the different views people put forward to try and make sense of quantum mechanics, to understand it, and then to contemplate on what they have to offer. To me, the joy of a mystery is not to revel in the mystery, but to search for solutions for it, and I will say the academic literature is filled with pretty good accounts of QM these days. It's been around for a century, a lot of ideas are very developed.

I also would not take the game Outer Wilds that seriously. It plays into the myth that quantum effects depend upon whether or not you are "looking," which is simply not the case and largely a myth. You end up with very bizarre and misleading results from this, for example, in the part where you land on the quantum moon and have to look at the picture of it for it to not disappear because your vision is obscured by fog. This makes no sense in light of real physics because the fog is still part of the moon and your ship is still interacting with the fog, so there is no reason it should hop to somewhere else.

Now quantum science isn’t exactly philosophy, ive always been interested in philosophy but its by studying quantum mechanics, inspired by that game that i learned about the mechanic of emerging properties. I think on a video about the dual slit experiment.

The double-slit experiment is a great example of something often misunderstood as somehow evidence observation plays some fundamental role in quantum mechanics. Yes, if you observe the path the two particles take through the slits, the interference pattern disappears. Yet, you can also trivially prove in a few line of calculation that if the particle interacts with a single other particle when it passes through the two slits then it would also lead to a destruction of the interference effects.

You model this by computing what is called a density matrix for both the particle going through the two slits and the particle it interacts with, and then you do what is called a partial trace whereby you "trace out" the particle it interacts with giving you a reduced density matrix of only the particle that passes through the two slits, and you find as a result of interacting with another particle its coherence terms would reduce to zero, i.e. it would decohere and thus lose the ability to interfere with itself.

If a single particle interaction can do this, then it is not surprising it interacting with a whole measuring device can do this. It has nothing to do with humans looking at it.

At that point i did not yet know that emergence was already a known topic in philosophy just quantum science, because i still tried to avoid external influences but it really was the breakthrough I needed and i have gained many new insights from this knowledge since.

Eh, you should be reading books and papers in the literature if you are serious about this topic. I agree that a lot of philosophy out there is bad so sometimes external influences can be negative, but the solution to that shouldn't be to entirely avoid reading anything at all, but to dig through the trash to find the hidden gems.

My views when it comes to philosophy are pretty fringe as most academics believe the human brain can transcend reality and I reject this notion, and I find most philosophy falls right into place if you reject this notion. However, because my views are a bit fringe, I do find most philosophical literature out there unhelpful, but I don't entirely not engage with it. I have found plenty of philosophers and physicists who have significantly helped develop my views, such as Jocelyn Benoist, Carlo Rovelli, Francois-Igor Pris, and Alexander Bogdanov.

[–] [email protected] 1 points 5 days ago* (last edited 5 days ago)

Understanding the nature of consciousness is one of the hardest problems in science. Some scientists have suggested that quantum mechanics, and in particular quantum entanglement, is the key to unraveling the phenomenon.

The argument for this has never been convincing. People like Roger Penrose have argued that because people can believe things without proof, therefore consciousness is "special" in the sense that it can do something uncomputable, so it must not be reducible to classical physics. This argument is just bizarre, humans believe things without proof because they they don't operate on proof but on confidence levels. They believe things that seem right to them based on their past experiences. Even AI operates on confidence levels and can say things that are false.

I have never seen a convincing argument that there really is something unique about human cognition that requires introducing anything quantum or even anything supernatural as it is popular for many philosophers in academia to argue these days.

Entanglement means the two-photon state is not a classical combination of two photon states. Instead, measuring or interacting with one of the photons instantly affects the same property of the second photon, no matter how far away it is.

This is just patently false. Entanglement is just a statistical correlation but one over quantum probabilities rather than classical probabilities (these can be distinguished by doing a trace over a density matrix). If you have two entangled particles, let's say they are two electrons with a 50% chance of both being spin up or down, so the only possibilities are ⇑⇑ or ⇓⇓ with no other possibilities. That means they are statistically correlated as measuring one tells you the value of the other.

Now, let's say, while they are still entangled, you flip the second one. If it's supposedly true that altering one would instantly affect the other, then this should not alter the outcome. If the first was going to be ⇑ and the second was going to be ⇑, and you flip the second prior to measuring it, then it would affect the first one so they would both become ⇓⇓.

Yet, this is not what happens in practice. In practice, if you flip the second one prior to measuring it, you find the statistical correlation changes to two possibilities of ⇑⇓ and ⇓⇑. This is exactly what you would even expect classically. If I give you two envelopes where inside of them there is a card facing up and the other there is a card facing down, and I guarantee that they are random but correlated such that both envelopes have the card facing the same direction, if you flip over one of the cards before opening it, then you would expect then to then be the opposite directions rather than the same.

There is no actual evidence measuring a particle in an entangled pair affects the other particle. These affects only exist if you make certain metaphysical assumptions that go beyond quantum mechanics. If you presume objective collapse or hidden variables, for example, then you have to posit such affects. But traditional quantum mechanics is not an objective collapse theory or a hidden variable theory.

Entanglement has been demonstrated for a system whose members are over 1,000 km apart. Nothing like it exists in classical physics; it is purely a quantum phenomenon. Here entanglement would raise the possibility of much faster signaling along the sections of myelin that encase segments of the axon’s length.

No. There is literally theorem called the No-signaling Theorem in quantum mechanics which proves such a thing is impossible.

[–] [email protected] 2 points 1 week ago* (last edited 1 week ago)

Quantum mechanics explains a range of phenomena that cannot be understood using the intuitions formed by everyday experience. Recall the Schrödinger’s cat thought experiment, in which a cat exists in a superposition of states, both dead and alive. In our daily lives there seems to be no such uncertainty—a cat is either dead or alive. But the equations of quantum mechanics tell us that at any moment the world is composed of many such coexisting states, a tension that has long troubled physicists.

No, this is a specific philosophical interpretation of quantum mechanics. It requires treating the wave function as a literal autonomous entity that actually describes the object. This is a philosophical choice and is not demanded by the theory itself.

The idea that two fundamental scientific mysteries—the origin of consciousness and the collapse of what is called the wave function in quantum mechanics—are related, triggered enormous excitement.

The "origin of consciousness" is not a "scientific mystery." Indeed, how the brain works is a scientific mystery, but "consciousness" is just something philosophers cooked up that apparently everything we perceive is an illusion (called "consciousness") created by the mammalian brain that is opposed to some "true reality" that is entirely invisible and beyond the veil of this illusion and has no possibility of ever being observed.

People like David Chalmers rightfully pointed out that if you believe this, then it seems like a mystery as to how this invisible "true reality" can "give rise to" the reality we actually experience and are immersed in every day. But these philosophers have simply failed to provide a compelling argument as to why the reality we perceive is an illusion created by the brain in the first place.

Chalmers doesn't even bother to justify it, he just cites Thomas Nagel who says that experience is "conscious" and "subjective" because true reality is absolute (point-of-view independent) and the reality we experience is relative (point-of-view dependent), and therefore it cannot be objective reality as it exists but must be a product of the mammalian brain. Yet, if the modern sciences has shown us anything, it is that reality is absolutely not absolute but is relative to its core.

Penrose's argument is even more bizarre, he claims that because we can believe things that cannot be mathematically proven, our brains can do things which are not computable, and thus there must be some relationship between the brain and the outcome of measurements in quantum mechanics in which no computation can predict them beforehand. Yet, it is just a bizarre argument. Humans can believe things that can't be proven because humans only operate on confidence levels. If you see enough examples to be reasonably confident the next will follow the same pattern, you can believe it. This is just called induction and nothing is preventing you from putting it into a computer.

According to Penrose, when this system collapses into either 0 or 1, a flicker of conscious experience is created, described by a single classical bit.

Penrose, like most philosophers never convincingly justifies that experience is "conscious".

However, per Penrose’s proposal, qubits participating in an entangled state share a conscious experience. When one of them assumes a definite state, we could use this to establish a communication channel capable of transmitting information faster than the speed of light, a violation of special relativity.

Here he completely goes off the rails and proposes something that goes against the scientific consensus for no clear reason. Why does his "theory" even need faster-than-light communication? How does proposing superluminal signaling help explain "consciousness"? All it does is make the theory trivially false since it cannot reproduce the predictions of experiments.

In our view, the entanglement of hundreds of qubits, if not thousands or more, is essential to adequately describe the phenomenal richness of any one subjective experience: the colors, motions, textures, smells, sounds, bodily sensations, emotions, thoughts, shards of memories and so on that constitute the feeling of life itself.

Now the author themselves is claiming experience is "subjective" yet does not justify it, like all sophists on this topic, they just always begin from the premise that we do not perceive reality as it is but some subjective illusion and rarely try to even justify it. That aside, they are also abusing terminology. Colors, motions, textures, smells, etc, these are not experiences but abstract categories. We can talk about the experience of the color red, but we can also talk about the experience of a rainbow, or an amusement park. Are amusement parks "subjective experiences"? No, it's an abstract category.

Abstract categories are normative constructs used to identify something within an experience, but are they not experiences themselves. You have an experience, and then you interpret that experience to be something. This process of interpretation and identification is not the same as the experience itself. Reality just is what it is. It is not blue or red, it is not a rainbow or an amusement park, it just is. These are socially constructed labels we apply to it.

Sophists love to demarcate the objects of "qualia," like red or green or whatever, as somehow "special" over any other category of objects, such as trees, rocks, rainbows, amusement parks, atoms, Higgs bosons, etc. Yet, they can never tell you why. They just insist they are special... somehow. All abstract categories are socially constructed norms used to identify aspects of reality. They are all shared concepts precisely because they are socially constructed: we are all taught to identify them in the same way. We are all shown something red and told "this is red." Two people may be physically different and thus this "red" has different impacts on them, no matter how different it is, they both learn to associate their real experience with the same word, and thus it becomes shared.

This is true for everything. Red, dogs, trees, cats, atoms, etc. There is no demarcation between them.

In an article published in the open-access journal Entropy, we and our colleagues turned the Penrose hypothesis on its head, suggesting that an experience is created whenever a system goes into a quantum superposition rather than when it collapses. According to our proposal, any system entering a state with one or more entangled superimposed qubits will experience a moment of consciousness.

This is what passes for "science" these days. Metaphysical realism has really poisoned people's minds.

The definitiveness of any conscious experience naturally arises within the many-worlds interpretation of quantum mechanics.

Another piece of sophistry that originates from some physicists simply disliking the Born rule, declaring it mathematically ugly, so they try to invent some underlying story from which it can be derived that would be more mathematically beautiful. However, this underlying story is not derived from anything we can observe, so there is no possible way to agree upon what it even is. There are dozens of proposals and no way to choose between them. There simply is not "the" many-worlds interpretation. There is many many-worlds interpretations.

To make these esoteric ideas concrete, we propose three experiments that would increasingly shape our thinking on these matters.

All the experiments proposed deal with observing the behavior of living organisms, which is irrelevant to the topic at hand.

[–] [email protected] 1 points 3 weeks ago

This is why many philosophers came to criticize metaphysical logic in the 1800s, viewing it as dealing with absolutes when reality does not actually exist in absolutes, stating that we need some other logical system which could deal with the "fuzziness" of reality more accurately. That was the origin of the notion of dialectical logic from philosophers like Hegel and Engels, which caught on with some popularity in the east but then was mostly forgotten in the west outside of some fringe sections of academia. Even long prior to Bell's theorem, the physicist Dmitry Blokhintsev, who adhered to this dialectical materialist mode of thought, wrote a whole book on quantum mechanics where the first part he discusses the need to abandon the false illusion of the rigidity and concreteness of reality and shows how this is an illusion even in the classical sciences where everything has uncertainty, all predictions eventually break down, nothing is never possible to actually fully separate something from its environment. These kinds of views heavily influenced the contemporary physicist Carlo Rovelli as well.

[–] [email protected] 1 points 3 weeks ago* (last edited 3 weeks ago)

And as any modern physicist will tell you: most of reality is indeed invisible to us. Most of the universe is seemingly comprised of an unknown substance, and filled with an unknown energy.

How can we possibly know this unless it was made through an observation?

Most of the universe that we can see more directly follows rules that are unintuitive and uses processes we can’t see. Not only can’t we see them, our own physics tells is it is literally impossible to measure all of them consistently.

That's a hidden variable theory, presuming that systems really have all these values and we just can't measure them all consistently due to some sort of practical limitation but still believing that they're there. Hidden variable theories aren't compatible with the known laws of physics. The values of the observables which become indefinite simply cease to have existence at all, not that they are there but we can't observe them.

But subjective consciousness and qualia fit nowhere in our modern model of physics.

How so? What is "consciousness"? Why do you think objects of qualia are special over any other kind of object?

I don’t think it’s impossible to explain consciousness.

You haven't even established what it is you're trying to explain or why you think there is some difficulty to explain it.

We don’t even fully understand what the question is really asking. It sidesteps our current model of physics.

So, you don't even know what you're asking but you're sure that it's not compatible with the currently known laws of physics?

I don’t subscribe to Nagel’s belief that it is impossible to solve, but I do understand how the points he raises are legitimate points that illustrate how consciousness does not fit into our current scientific model of the universe.

But how?! You are just repeating the claim over and over again when the point of my comment is that the claim itself is not justified. You have not established why there is a "hard problem" at all but just continually repeat that there is.

If I had to choose anyone I’d say my thoughts on the subject are closest to Roger Penrose’s line of thinking, with a dash of David Chalmers.

Meaningless.

I think if anyone doesn’t see why consciousness is “hard” then there are two possibilities: 1) they haven’t understood the question and its scientific ramifications 2) they’re not conscious.

You literally do not understand the topic at hand based on your own words. Not only can you not actually explain why you think there is a "hard problem" at all, but you said yourself you don't even know what question you're asking with this problem. Turning around and then claiming everyone who doesn't agree with you is just some ignoramus who doesn't understand then is comically ridiculous, and also further implying people who don't agree with you may not even be conscious.

Seriously, that's just f'd up. What the hell is wrong with you? Maybe you are so convinced of this bizarre notion you can't even explain yourself because you dehumanize everyone who disagrees with you and never take into consideration other ideas.

[–] [email protected] 1 points 3 weeks ago* (last edited 3 weeks ago) (1 children)

This is accurate, yes. The cat in the box is conscious presumably, in my opinion of cats at least, but still can be “not an observer” from the POV of the scientist observing the experiment from outside the box.

"Consciousness" is not relevant here at all. You can write down the wave function of a system relative to a rock if you wanted, in a comparable way as writing down the velocity of a train from the "point of view" of a rock. It is coordinate. It has nothing to do with "consciousness." The cat would perceive a definite state of the system from its reference frame, but the person outside the box would not until they interact with it.

QM is about quite a lot more than coordinate systems

Obviously QM is not just coordinate systems. The coordinate nature of quantum mechanics, the relative nature of it, is merely a property of the theory and not the whole theory. But the rest of the theory does not have any relevance to "consciousness."

and in my opinion will make it look weird in retrospect once physics expands to a more coherent whole

The theory is fully coherent and internally consistent. It amazes me how many people choose to deny QM and always want to rush to change it. Your philosophy should be guided by the physical sciences, not the other way around. People see QM going against their basic intuitions and their first thought is it must be incomplete and needs to have additional complexity added to it to make it fit their intuitions, rather than just questioning that maybe their basic intuitions are wrong.

Your other comment was to a Wikipedia page which if you clicked the link on your own source it would've told you that the scientific consensus on that topic is that what you're presenting is a misinterpretation.

A simple search on YouTube could've also brought up several videos explaining this to you.

Edit: Placing my response here as an edit since I don't care to continue this conversation so I don't want to notify.

Yes, that was what I said. Er, well… QM, as I understand it, doesn’t have to do anything with shifting coordinate systems per se (and in fact is still incompatible with relativity). They’re just sort of similar in that they both have to define some point of view and make everything else in the model relative to it. I’m still not sure why you brought coordinate systems into it.

A point of view is just a colloquial term to refer to a coordinate system. They are not coordinate in the exact same way but they are both coordinate.

My point was that communication of state to the observer in the system, or not, causes a difference in the outcome. And that from the general intuitions that drive almost all of the rest of physics, that’s weird and sort of should be impossible.

No, it doesn't not, and you're never demonstrated that.

Sure. How is it when combined with macro-scale intuition about the way natural laws work, or with general relativity?

We have never observed quantum effects on the scale where gravitational effects would also be observable, so such a theory, if we proposed one, would not be based on empirical evidence.

This is very, very very much not what I am doing. What did I say that gave you the impression I was adding anything to it?

You literally said in your own words we need to take additional things into account we currently are not. You're now just doing a 180 and pretending you did not say what literally anyone can scroll up and see that you said.

I am not talking about anything about retrocausality here, except maybe accidentally.

Then you don't understand the experiment since the only reason it is considered interesting is because if you interpret it in certain ways it seems to imply retrocausality. Literally no one has ever treated it as anything more than that. You are just making up your own wild implications from the experiment.

I was emphasizing the second paragraph; “wave behavior can be restored by erasing or otherwise making permanently unavailable the ‘which path’ information.”

The behavior of the system physically changes when it undergoes a physical interaction. How surprising!

[–] [email protected] 0 points 3 weeks ago* (last edited 3 weeks ago)

Both these figures are embarrassingly bad.

Hoffman confuses function for perception and constantly uses arguments demonstrating things can interpret reality incorrectly (which is purely a question of function) in order to argue they cannot perceive reality "as it is.," which is a huge non-sequitur. He keeps going around promoting his "theorem" which supposedly "proves" this yet if you read his book where he explains his theorem it is again clearly about function as his theorem only shows that limitations in cognitive and sensory capabilities can lead something to interpret reality incorrectly yet he draws a wild conclusion which he never justifies that this means they do not perceive reality "as it is" at all.

Kastrup is also just incredibly boring because he never reads books so he is convinced the only two philosophical schools in the universe are his personal idealism and metaphysical realism, which the latter he constantly incorrectly calls "materialism" when not all materialist schools of thought are even metaphysically realist. Unless you are yourself a metaphysical realist, nothing Kastrup has ever written is interesting at all, because he just pretends you don't exist.

Metaphysical realism is just a popular worldview in the west that most Laymen tend to naturally take on unwittingly. If you're a person who has ever read books in your life, then you'd quickly notice that attacking metaphysical realism doesn't get you to idealism, at best it gets you to metaphysical realism being not a coherent worldview... which that is the only thing I agree with Kastrup with.

view more: next ›